Rainbow Domination in Graphs

نویسندگان

  • Boštjan Brešar
  • Michael A. Henning
  • Douglas F. Rall
چکیده

Assume we have a set of k colors and to each vertex of a graph G we assign an arbitrary subset of these colors. If we require that each vertex to which an empty set is assigned has in its neighborhood all k colors, then this is called the k-rainbow dominating function of a graph G. The corresponding invariant γrk(G), which is the minimum sum of numbers of assigned colors over all vertices of G, is called the k-rainbow domination number of G. In this paper we connect this new concept to usual domination in (products of) graphs, and present its application to paired-domination of Cartesian products of graphs. Finally, we present a linear algorithm for determining a minimum 2-rainbow dominating set of a tree.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some Results on the Maximal 2-Rainbow Domination Number in Graphs

A 2-rainbow dominating function ( ) of a graph  is a function  from the vertex set  to the set of all subsets of the set  such that for any vertex  with  the condition  is fulfilled, where  is the open neighborhood of . A maximal 2-rainbow dominating function on a graph  is a 2-rainbow dominating function  such that the set is not a dominating set of . The weight of a maximal    is the value . ...

متن کامل

Total $k$-Rainbow domination numbers in graphs

Let $kgeq 1$ be an integer, and let $G$ be a graph. A {it$k$-rainbow dominating function} (or a {it $k$-RDF}) of $G$ is afunction $f$ from the vertex set $V(G)$ to the family of all subsetsof ${1,2,ldots ,k}$ such that for every $vin V(G)$ with$f(v)=emptyset $, the condition $bigcup_{uinN_{G}(v)}f(u)={1,2,ldots,k}$ is fulfilled, where $N_{G}(v)$ isthe open neighborhood of $v$. The {it weight} o...

متن کامل

Critical concept for 2-rainbow domination in graphs

For a graph G, let f : V (G) → P({1, 2, . . . , k}) be a function. If for each vertex v ∈ V (G) such that f(v) = ∅ we have ∪u∈N(v)f(u) = {1, 2, . . . , k}, then f is called a k-rainbow dominating function (or simply kRDF) of G. The weight, w(f), of a kRDF f is defined as w(f) = ∑ v∈V (G) |f(v)|. The minimum weight of a kRDF of G is called the k-rainbow domination number of G, and is denoted by ...

متن کامل

On the 2-rainbow domination in graphs

The concept of 2-rainbow domination of a graph G coincides with the ordinary domination of the prism G K2. In this paper, we show that the problem of deciding if a graph has a 2-rainbow dominating function of a given weight is NP-complete even when restricted to bipartite graphs or chordal graphs. Exact values of 2-rainbow domination numbers of several classes of graphs are found, and it is sho...

متن کامل

Rainbow Domination and Related Problems on Some Classes of Perfect Graphs

Let k ∈ N and let G be a graph. A function f : V (G) → 2 is a rainbow function if, for every vertex x with f(x) = ∅, f(N(x)) = [k]. The rainbow domination number γkr(G) is the minimum of ∑ x∈V (G) |f(x)| over all rainbow functions. We investigate the rainbow domination problem for some classes of perfect graphs.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008